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Abstract

An efficient four-node quadrilateral element is developed using a coupled improved zigzag theory for the dynamic

analysis of hybrid plates with segmented piezoelectric sensors and actuators. The theory considers a third-order zigzag

approximation for inplane displacements, a layerwise quadratic approximation for the electric potential and a layerwise

variation of the deflection to account for the piezoelectric transverse normal strain. The conditions on transverse shear

stresses at the interfaces and at the top and bottom are satisfied exactly in the presence of electric loading. In a novel

concept, the degrees of freedom (dof) corresponding to the quadratic component of the electric potential distribution are

associated with the physical nodes and the electric potentials of the electroded piezoelectric surfaces are attached to

separate electric nodes. The requirement of C1 continuity of interpolation functions of the deflection is circumvented by

employing an improved discrete Kirchhoff constraint technique. Comparison of the present results for natural frequencies

and mode shapes for a variety of bimorph, hybrid composite and sandwich plates, with three-dimensional (3D) analytical

and FE solutions, and those of other available elements establishes the superiority of the present element with respect to

accuracy, robustness and computational efficiency. The comparison also establishes the superiority of the zigzag theory

over the smeared third-order theory having the same number of dof.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Hybrid composite and sandwich plates with some distributed, surface-bonded and/or embedded
piezoelectric sensors and actuators are now widely used in active vibration, acoustic, shape and position
control applications. The piezoelectric sensors/actuators are always electroded with a metallic coating, which
makes their surfaces equipotential. It is revealed from the review papers [1,2] on finite element (FE) modelling
of piezoelectric hybrid laminates that most of the finite elements consider electric potential degrees of freedom
(dof) as nodal variables, and some [3–8] treat them as elemental variables making them constant along inplane
directions over an element. In the latter case, the inplane electric fields which may be induced due to a direct
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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piezoelectric effect cannot be accounted for. In both cases, to model the equipotential condition on the
electroded surfaces, it would be necessary to impose the constraints of equality on the electric dof of the
nodes/elements on the same electroded surface or to average them as an approximation [8,9], both of which
are tedious tasks. Sze and Yao [10] presented a solid element wherein the electric potential is considered linear
across the piezoelectric layer and the electric dof corresponding to a piezoelectric patch are attached to a
separate electric node instead of the physical nodes. But this approach cannot account for the inplane electric
fields, as all the electric dof are associated with electric nodes.

Three-dimensional (3D) finite elements [10–13] for dynamic analysis of piezoelectric laminates result in a
very large problem size which becomes computationally intractable. Hence, efficient and accurate two-
dimensional (2D) theories, and their simple and robust FE models are needed. Coupled discrete layer theories
(DLTs) [14,15] considering layerwise linear variation of inplane displacements and electric potential yield
accurate results, but they too suffer from an excessive number of dof in proportion to the number of layers.
To improve the computational efficiency, FE models based on the mixed field 2D theories have been
proposed, which consider a global equivalent single layer (ESL) approximation for the mechanical
field variables and a layerwise approximation for the electric potential. Four-node [3,4,16], eight-node
serendipity [5,17,18] and nine-node Lagrange [6,19] isoparametric elements have been developed for dynamics
of hybrid plates and shells, using the first-order shear deformation theory (FSDT), which requires only C0

continuity of the displacement variables. Gu et al. [20] developed a four-node nonconforming rectangular
element with 7 mechanical dof per node, based on the refined third-order theory (TOT) of Reddy [21], which
requires C1 continuity of deflection along the element boundary. Nine-node [22] plate elements with 11
mechanical dof per node and an eight-node degenerate shell element [7] with 9 dof per node have been
developed based on higher order theories (HOTs), requiring C0 continuity of the deflection. The ESL theories
are economical but they do not account for the layerwise (zigzag) nature of variation of the inplane
displacements across the laminate thickness as observed from 3D piezoelasticity solutions [23,24]. Hence, they
are inadequate for obtaining an accurate response of moderately thick and even thinner laminates with strong
layerwise inhomogeneities.

To retain the merits of the DLTs and economy of the ESL theories, Di Sciuva [25] and Cho and Parmerter
[26] presented an efficient layerwise theory also known as zigzag theory (ZIGT), wherein the inplane
displacements are assumed to have a layerwise linear variation with a global cubic variation, but the number
of displacement variables are reduced to five by imposing the conditions of continuity of transverse shear
stresses at the interfaces and shear traction-free conditions at the top and bottom surfaces. A historical review
of the available zigzag theories for elastic laminated plates and shells has been presented by Carrera [27]. The
ZIGT of Refs. [25,26] was extended to the piezoelectric laminate by the first author and coworkers for hybrid
beams [28] and plates [29,30]. This theory requires C1 continuity of deflection along the inter-element
boundary like the TOT, which poses difficulties in developing simple conforming quadrilateral elements,
unlike the FSDT and HOTs. Topdar et al. [31] developed a four-node rectangular element with 8 mechanical
dof per node employing the third-order ZIGT [26] for dynamics of adaptive plates. Robaldo et al. [32]
presented a unified FE formulation for ESL theories and DLT and Reissner-type zigzag theory for dynamic
analysis of adaptive plates. In the Reissner-type zigzag theory [32], constitutive equations for shear stresses are
satisfied only approximately. Unlike the theories in Refs. [31,32], the coupled improved zigzag theory (IZIGT)
of [29] directly accounts for the layerwise variation of transverse displacement caused by the electric field
through the d33 effect, which is a unique feature of this theory. It also satisfies exactly the conditions on the
transverse shear stresses at the layer interfaces and the top and bottom surfaces, in the presence of an inplane
electric field that may be induced by a direct piezoelectric effect.

Exact 3D piezoelasticity solutions reveal [29] that the electric potential f follows a nearly quadratic
variation across piezoelectric layers and the assumption of a linear variation for f can cause a significant error
in the computed response [8,33]. While most of the above literatures consider a linear variation of f across the
layer, a sublayerwise linear variation is considered in Refs. [17,28–30], in which the piezoelectric can be divided
into an arbitrary number of sublayers. Such a description can yield a fairly accurate prediction of f [29], but it
results in a large number of unknown potentials and may still give erroneous results for the transverse electric
displacement and inplane normal stresses in the piezoelectric layers. Higher order approximations of the
electric potential have been adopted by Rogacheva [34] for single-layer piezoelectrics and by Krommer [35],
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and Vasques and Rodrigues [8] for layered smart beams, wherein approximations are made on the axial
component of the electric field or the electric displacement.

In this work, an efficient four-node quadrilateral element is developed for dynamic analysis of hybrid plates
based on the improved third-order zigzag theory [30]. The electric potential is approximated to follow a
quadratic variation across the piezoelectric layers, as observed from the exact 3D piezoelasticity solution [29].
The transverse displacement is approximated by superposing an explicit layerwise contribution of the
transverse electric field on a constant term. The requirement of C1 continuity of the interpolation functions of
the deflection is circumvented by using the improved discrete Kirchhoff quadrilateral (IDKQ) functions, as
applied successfully by the authors [36] for elastic multilayered plates. The element has four physical nodes
with seven kinetic dof per node. In a novel concept, the electric potential dof associated with an equipotential
electroded surface are attached to an electric node, which has no physical coordinates unlike the physical
nodes, and the electric dof corresponding to the quadratic component of potential distribution are associated
with the physical nodes. This conveniently models the equipotential condition of electroded surfaces with a
significantly reduced number of electric dof, and also allows for the inplane electric field that may be induced
by the direct piezoelectric effect. The element based on an improved TOT accounting for transverse
extensibility in the presence of an electric field is also developed as a special case.

2. Coupled zigzag theory approximations

Consider a smart hybrid plate (Fig. 1) made of perfectly bonded layers of angle-ply composite materials
with some layers of piezoelectric materials acting as sensors and actuators. The piezoelectric materials
considered here exhibit class mm2 symmetry with respect to the principal material axes [37], as observed in the
commonly used piezoelectric materials PZT and PVDF. These are poled along the thickness direction z. Due
to the presence of piezoelectric patches, the number of layers L and the total thickness h may vary from one
segment of the plate to another. The reference xy-plane (z ¼ 0) is chosen to be the plane which is the mid-plane
for most portions of the plate. The z-coordinate of the bottom surface of the kth layer from the bottom is
denoted as zk�1, and its material symmetry axis x1 is at angle y

k to the x-axis. The layer in which the reference
plane lies or for which it is the bottom surface is denoted as the k0th layer.

Like most other 2D plate theories, the transverse normal stress sz is neglected ðsz ’ 0Þ in comparison with
other stress components. However, the transverse normal strain ez is not assumed to be zero. Using this
assumption, the linear constitutive equations relating the stresses s; t and electric displacements Dx;Dy;Dz to
Fig. 1. Geometry of a hybrid plate segment.
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the strains e; g and electric field components Ex;Ey;Ez are obtained as

s ¼ Q̄e� ēT3 Ez; t ¼ Q̂g� êE; D ¼ êTgþ ẐE; Dz ¼ ē3eþ Z̄33Ez, (1)

where, for general angle-ply laminas,

s ¼

sx

sy

txy

2
664

3
775; t ¼

tzx

tyz

" #
; D ¼

Dx

Dy

" #
; e ¼

ex

ey

gxy

2
664

3
775; g ¼

gzx

gyz

" #
; E ¼

Ex

Ey

" #
,

Q̄ ¼

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

2
664

3
775; Q̂ ¼

Q̄55 Q̄54

Q̄45 Q̄44

" #
; ê ¼

ē15 ē25

ē14 ē24

" #
; Ẑ ¼

Z̄11 Z̄12

Z̄12 Z̄22

" #
,

ē3 ¼ ½ē31 ē32 ē36�. (2)

Q̄ij ; ēij and Z̄ij are the reduced elastic stiffnesses, piezoelectric stress constants and electric permittivities, which
can be expressed, for a given orientation yk of the material axis x1, in terms of Young’s moduli Y i, shear
moduli Gij , Poisson’s ratios nij , piezoelectric strain constants dij and electric permittivities Zij . Let ux; uy and w

be the inplane and transverse displacements, and f be the electric potential. Denoting differentiation by a
subscript comma, the strain–displacement relations and the electric field-potential relations are given by

ex ¼ ux;x; ey ¼ uy;y; ez ¼ w;z; gxy ¼ ux;y þ uy;x; gyz ¼ uy;z þ w;y; gzx ¼ ux;z þ w;x,

Ex ¼ �f;x; Ey ¼ �f;y; Ez ¼ �f;z. (3)

3D coupled piezoelasticity solutions [23,29] for piezoelectric plates poled along the thickness direction have
revealed that the electric potential f follows a nearly quadratic distribution across the thickness. Accordingly,
f at time t is assumed to be piecewise quadratic between nf points at z ¼ z

j
f across the thickness (Fig. 2):

fðx; y; z; tÞ ¼ Cj
fðzÞf

j
ðx; y; tÞ þCl

cðzÞf
l
cðx; y; tÞ, (4)

where fj
ðx; y; tÞ is the electric potential at z ¼ z

j
f and fl

cðx; y; tÞ denotes the quadratic component of electric
potential at z ¼ ðzl

f þ zlþ1
f Þ=2. The summation convention is used with the indices j and l taking values
Fig. 2. Approximation of f along the z-direction.
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j ¼ 1; 2; . . . ; nf and l ¼ 1; 2; . . . ; nf � 1. Cj
fðzÞ and Cl

cðzÞ are the piecewise linear and quadratic functions,
respectively, given by

Cj
fðzÞ ¼

0 if pz
j�1
f or if zXz

jþ1
f

ðz� z
j�1
f Þ=ðz

j
f � z

j�1
f Þ if z

j�1
f ozoz

j
f

ðz
jþ1
f � zÞ=ðzjþ1

f � z
j
fÞ if z

j
fozoz

jþ1
f

8>>><
>>>:

9>>>=
>>>;
,

Cl
cðzÞ ¼

4ðzlþ1
f � zÞðz� zl

fÞ=ðz
lþ1
f � zl

fÞ
2 if zl

fpzpzlþ1
f

0 other wise

( )
. (5)

The surfaces of the piezoelectric sensor and actuator patches are always electroded with a metallic coating,
which makes the surfaces equipotential. Thus, fj should be taken as independent of x; y in a finite element
covering the electroded patch. With this description, f in the piezoelectric layer can be modelled by a single-
layer discretization, unlike the multiple sublayer discretization in case of a piecewise linear description [29].

Deflection w is approximated by integrating the constitutive equation for ez by including only the
predominant contribution of Ez through the piezoelectric constant d33. Thus, integrating ez ¼ w;z ’ �d̄33f;z
yields

wðx; y; z; tÞ ¼ w0ðx; y; tÞ � fC̄
j

fðzÞf
j
ðtÞ þ C̄l

cðzÞf
l
cðx; y; tÞg, (6)

where C̄j

fðzÞ ¼
R z

0 d̄33C
j
f;zðzÞdz and C̄l

c ¼
R z

0 d̄33Cl
c;zðzÞdz. For the kth layer, ux; uy are approximated as a

combination of third-order variation in z across the thickness and layerwise piecewise linear variation:

uðx; y; z; tÞ ¼ ukðx; y; tÞ � zw0d
ðx; y; tÞ þ zckðx; y; tÞ þ z2xðx; y; tÞ þ z3Zðx; y; tÞ, (7)

where

u ¼
ux

uy

" #
; w0d

¼
w0;x

w0;y

" #
; uk ¼

ukx

uky

" #
; ck ¼

ckx

cky

" #
; x ¼

xx

xy

" #
; Z ¼

Zx

Zy

" #
. (8)

uk denotes the translation components of the kth layer and ck is related to its shear rotations. x and Z are the
global quadratic and cubic terms in z. Thus, uk and ck represent the layerwise linear component of the
assumed displacement field and the remaining terms in Eq. (7) represent the global third-order variation. For
the mid-plane which passes through the k0th layer, denote u0ðx; y; tÞ ¼ uk0

ðx; y; tÞ ¼ uðx; y; 0; tÞ and
c0ðx; y; tÞ ¼ ck0

ðx; y; tÞ.
Substituting ux; uy; w from Eqs. (6) and (7), and f from Eq. (4) into Eqs. (1) and using Eq. (2) yields the

transverse shear stresses t as

t ¼ Q̂k½ck þ 2zxþ 3z2Z� þ ½êkCj
fðzÞ � Q̂kC̄j

fðzÞ�f
j
d þ ½ê

kCl
cðzÞ � Q̂kC̄l

cðzÞ�f
l
cd
, (9)

where fj
d ¼ ½f

j
;x fj

;y�
T and fl

cd
¼ ½fl

c;x fl
c;y�

T. At interface z ¼ zi�1 between layers i and i � 1, Cl
c and C̄l

c

disappear. Also, fj
;x;f

j
;y are zero in an element because of the equipotential condition of the surfaces of

piezoelectric layers. Therefore, at a layer interface (as well as at the top and bottom surfaces for the same
reason), all terms in Eq. (9) involving f disappear. Thus, the continuity condition of t at interface z ¼ zi�1

yields

Q̂i½ci þ 2zi�1xþ 3z2i�1Z� ¼ Q̂i�1½ci�1 þ 2zi�1xþ 3z2i�1Z�. (10)

Using Eq. (10) and enforcing ðL� 1Þ conditions each for the continuity of t and u at the layer interfaces
and the four shear traction-free conditions t ¼ 0 at z ¼ z0; zL, the (4þ L) unknowns uk;ck; x and Z for the
L-layered laminate are expressed in terms of only four variables u0 and c0 to yield

uðx; y; z; tÞ ¼ u0ðx; y; tÞ � zw0d
ðx; y; tÞ þ RkðzÞc0ðx; y; tÞ, (11)
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where RkðzÞ is a 2� 2 matrix of the layerwise function of z of the form

RkðzÞ ¼ R̂k
1 þ zR̂k

2 þ z2R̂3 þ z3R̂4. (12)

R̂k
1 ; R̂

k
2 ; R̂3 and R̂4 are 2� 2 coefficient matrices which depend on the material properties and the lay-ups.

For the smeared third-order theory (TOT) [21], u can be expressed in the form of Eq. (11) with RkðzÞ being
replaced by a diagonal matrix RðzÞ of a global function in z for the entire thickness, defined by

RðzÞ ¼ ½zþ f�z2ðz0 þ zLÞ=2þ z3=3g=z0zL�I2, (13)

where I2 is a 2� 2 identity matrix. Eq. (11) is expressed as

u ¼ f 0ðzÞū1 (14)

with

ū1 ¼ ½u0x
u0y
� w0;x � w0;y c0x

c0y
�T,

f 0ðzÞ ¼ ½I2 I2z RkðzÞ�. (15)

Substitution of Eqs. (4), (6) and (11) into the field-gradient relations (3) and Eq. (2) yields

e ¼ f 1ðzÞē1; g ¼ f 2ðzÞē2; E ¼ �f 3ðzÞē3; Ez ¼ �f 4ðzÞē4, (16)

where

ē1 ¼ ½e0 k0 c0d
�T; f 1ðzÞ ¼ ½I3 zI3 F̄k

ðzÞ�,

ē2 ¼ ½c0 � fl
cd
�T; f 2ðzÞ ¼ ½R

k
;zðzÞ C̄

l

cðzÞI2�,

ē3 ¼ ½f
l
c;x fl

c;y�
T; f 3ðzÞ ¼ Cl

cðzÞ,

ē4 ¼ ½f
l
c fj
�T; f 4ðzÞ ¼ ½C

l
c;zðzÞ C

j
f;zðzÞ� (17)

with

e0 ¼

u0x;x

u0y;y

u0x;y þ u0y;x

2
64

3
75; k0 ¼ �

w0;xx

w0;yy

2w0;xy

2
64

3
75; c0d

¼

c0x;x

c0x;y

c0y;x

c0y ;y

2
66664

3
77775; Fk ¼

Rk
11 0 Rk

12 0

0 Rk
21 0 Rk

22

Rk
21 Rk

11 Rk
22 Rk

12

2
64

3
75. (18)

3. Extended Hamilton’s principle

Let p1
z , p2

z be the forces per unit area applied on the bottom and top surfaces of the plate in direction z and

rk be the material mass density of the kth layer. The extended Hamilton’s principle for the piezoelectric

medium [37] can be expressed, using the notation h. . .i ¼
PL

k¼1

R z�
k

zþ
k�1

ð. . .Þdz for integration across the

thickness, asZ
A

½hrkðduT €uþ €w dwÞ þ deT sþ dgT t� dET D�Dz dEzi � p1
z dwðx; y; z0; tÞ � p2

z dwðx; y; zL; tÞ

þDzðx; y; z0; tÞdf
1
�Dzðx; y; zL; tÞdf

nf �dA�

Z
GL

hsn dun þ tns dus þ tnz dwþDn dfids ¼ 0 (19)

8du0; dw0; dc0; df
l
c; df

j, where A denotes the mid-plane surface area of the plate and GL is the boundary curve
of the mid-plane of the plate with normal n and tangent s. It has been observed elsewhere [38] that the explicit
contribution of electric potential terms in w [Eq. (6)] to inertia can be neglected to achieve computational
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efficiency, without practically sacrificing any accuracy. Considering this and substituting Eqs. (4), (6), (14) and
(16) into Eq. (19) yieldsZ

A

½duT
1 I €̄u1 þ dwT

0 Ī €̄w0 þ dēT1 F 1 þ dēT2 F2 þ dēT3 F 3 þ dēT4 F4 � P3 dw0 � P
j
f df

j
�dA

�

Z
GL

½Nn du0n
þNns du0s

�Mn dw0;n þ ðVn þMns;sÞdw0 þ Pn dc0n
þ Pns dc0s

þ ðHj
n � V

j
fn
Þ dfj
þ ðHl

cn
� Vl

cn
Þ dfl

c�ds�
X

i

DMnsðsiÞ dw0ðsiÞ ¼ 0, (20)

where the lateral surface has corners at s ¼ si. In this equation, I and Ī are the inertia matrices defined by

I ¼ hrkf T
0 ðzÞf 0ðzÞi ¼

I11 0 I13 0 I15 I16

0 I22 0 I24 I25 I26

I31 0 I33 0 I35 I36

0 I42 0 I44 I45 I46

I51 I52 I53 I54 I55 I56

I61 I62 I63 I64 I65 I66

2
6666666664

3
7777777775
; Ī ¼ hrki ¼ I11 (21)

with the following explicit expressions for the submatrices:

I11 0

0 I22

" #
;

I13 0

0 I24

" #
;

I15 I16

I25 I26

" #" #
¼ hrk½I2; zI2; RkðzÞ�i,

I33 0

0 I44

" #
;

I35 I36

I45 I46

" #
;

I55 I56

I65 I66

" #" #
¼ hrk½z2I2; zRkðzÞ; fRkðzÞgTRkðzÞ�i. (22)

The stress resultants F1 of s and F2;V ;V
j
f;V

l
c of t, and the electric displacement resultants F3;H

j of D and F 4

of Dz are defined by

F1 ¼ ½N
T MT PT�T ¼ ½hf T

1 si�; F2 ¼ ½Q
T Q̄

lT

�T ¼ ½hf T
2 ti�,

F 3 ¼ ½H
l
cx

Hl
cy
�T ¼ hf 3ðzÞDi; F4 ¼ ½G

l
c Gj�T ¼ ½hf T

4 Dzi�; V ¼ ½V x Vy�
T ¼ hti,

V
j
f ¼ ½V

j
fx

V
j
fy
�T ¼ hC̄j

fti; V l
c ¼ ½V

l
cx

Vl
cy
�T ¼ hC̄l

cti; Hj ¼ ½Hj
x Hj

y�
T ¼ hCj

fDi,

N ¼ ½Nx Ny Nxy�
T; M ¼ ½Mx My Mxy�

T; P ¼ ½Px Pyx Pxy Py�,

Q ¼ ½Qx Qy�
T; Q̄

l
¼ ½Q̄

l

x Q̄l
y�
T. (23)

N, M and P denote the inplane force, moment and higher order moment resultants, respectively. V and Q

denote the transverse shear and higher order transverse shear resultants, respectively, and V
j
f;V

l
c and Q̄

l
are

the electromechanical transverse shear resultants. It can be shown that elements of Rk;N;M and P transform
as second-order tensors and elements of V ;Vj

f;V
l
c;Q; Q̄

l
;Hj ;Hl

c transform as vectors for the coplanar axes
x; y and n; s. The mechanical load P3 and the electromechanical loads P

j
f in Eq. (20) are defined by

P3 ¼ p1
z þ p2

z ; P
j
f ¼ �p1

zC̄
j
fðz0Þ � p2

zC̄
j
fðzLÞ þDzðx; y; zL; tÞdjnf �Dzðx; y; z0; tÞdj1, (24)

where dij is Kronecker’s delta. Substitution of the constitutive equations (1) into Eq. (23) yields the following
generalized piezoelectric plate constitutive equations:

F1 ¼ Aē1 þ bē4; F2 ¼ Āē2 þ b̄ē3; F3 ¼ b̄Tē2 þ Ēē3; F4 ¼ bTē1 þ F̄ ē4, (25)
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where

A ¼ hf T
1 ðzÞQ̄f 1ðzÞi; b ¼ hf T

1 ðzÞē
T
3 f 4ðzÞi; F̄ ¼ �hZ̄33f T

4 ðzÞf 4ðzÞi,

Ā ¼ hf T
2 ðzÞQ̂f 2ðzÞi; b̄ ¼ hf T

2 ðzÞêC
l0

c ðzÞi; Ē ¼ �hẐCl
cðzÞC

l0

c ðzÞi. (26)

Using the generalized constitutive equations (25), the area integral in Eq. (20) reduces toZ
A

½duT
1 I €̄u1 þ dwT

0 Ī €̄w0�dAþ

Z
A

½dēT1 Aē1 þ dēT1 bē4 þ dēT2 Āē2

þ dēT2 b̄ē3 þ dēT3 b̄
Tē2 þ dēT3 Ēē3 þ dēT4 b

Tē1 þ dēT4 F̄ ē4 � P3 dw0 � P
j
f df

j
�dA. (27)

The variationally consistent boundary conditions on GL are obtained from the terms in the line integral in
Eq. (20) as the prescribed values of one of the factors of each of the following products:

u0n
Nn; u0s

Nns; w0ðV n þMns;sÞ; w0;nMn; c0n
Pn; c0s

Pns; fj
½Hj

n � V
j
fn
�; fl

c½H
l
cn
� V l

cn
�

and at corners si:w0ðsiÞDMnsðsiÞ. (28)

The mechanical boundary conditions for various edge conditions are

simply supported:Nn ¼ 0; u0s
¼ 0; w0 ¼ 0; Mn ¼ 0; Pn ¼ 0; c0s

¼ 0,

clamped: u0n
¼ 0; u0s

¼ 0; w0 ¼ 0; w0;nð¼ ynÞ ¼ 0; c0n
¼ 0; c0s

¼ 0,

free:Nn ¼ 0; Nns ¼ 0; Vn þMns;s ¼ 0; Mn ¼ 0; Pn ¼ 0; Pns ¼ 0. (29)
4. Finite element formulation

A four-node quadrilateral element is developed based on the coupled improved zigzag theory presented
above. While the electric variables fl

c are a function of inplane coordinates (x; y), fj is constant over the
element. In a novel hybrid approach, fl

c is treated as nodal dof and fj is treated as elemental dof. However, if
a number of elements fall in the same electroded surface, it would be necessary to impose the constraint of
equality on the electric dof fj of the elements on the same electroded surface. Instead, the set of fj of the
equipotential surfaces of piezoelectric patches in a plate section is associated with a separate electric node p
(Fig. 3), which can be connected to several elements. The electric node does not have any physical coordinates
{φj}

2

p

1

3

4

x

y

ξ

η

--- physical nodes 

 --- electric node 

Fig. 3. The quadrilateral element with an electric node.
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unlike the physical nodes, and has nf degrees of freedom. This concept not only eliminates the need for
imposing equality constraints on the electric dof for an equipotential condition but also results in a significant
reduction in the number electric dof.

As the highest derivatives of u0x
; u0y

;c0x
;c0y

;fl
c appearing in variational equation (20) are of first order,

the convergence criteria require their interpolation function to be C0 continuous at the element
boundary. Accordingly, these variables are interpolated using bilinear Lagrange interpolation functions, Ni

(i ¼ 1; 2; 3; 4), as

u0x
¼ Nue

0x
; u0y

¼ Nue
0y
; c0x

¼ Nce
0x
; c0y

¼ Nce
0y
; fl

c ¼ Nfle

c , (30)

where

ue
0x
¼ ½u1

0x
u2
0x

u3
0x

u4
0x
�T ; ue

0y
¼ ½u1

0y
u2
0y

u3
0y

u4
0y
�T,

ce
0x
¼ ½c1

0x
c2
0x

c3
0x

c4
0x
�T; ce

0y
¼ ½c1

0y
c2
0y

c3
0y

c4
0y
�T,

fle

c ¼ ½f
l1

c fl2

c fl3

c fl4

c �
T; N ¼ ½N1 N2 N3 N4�. (31)

The presence of the second derivative of w0 in Eq. (20) indicates that its interpolation function should have
C1 continuity at the element boundary, which is difficult to achieve for a quadrilateral element [39]. The need
for C1 continuity is circumvented herein by using the improved discrete Kirchhoff constraint approach, which
was proposed in Ref. [40] for the bending of isotropic thin Kirchhoff plates and successfully employed for
elastic anisotropic laminated plates by the authors [36]. In this approach, w0;x, w0;y are replaced by rotation
variables y0x

, y0y
, which then require only C0 continuity. w0 and y0x

; y0y
are interpolated independently, but the

two are subsequently related by imposing the constraints y0i ¼ w0;i at discrete points on the element boundary
as well as in the interior. The implementation enforces complete compatibility of the deflection field along the
element sides [39]. However, due to discrete imposition of constraints, its convergence characteristics are not
clear a priori, as for the non-conforming elements. w0 is interpolated assuming a bicubic function in terms of
parametric co-ordinates x and Z [39] as

w0 ¼ ½ ~N1
~N2

~N3
~N4

~N5
~N6

~N7
~N8

~N9
~N10

~N11
~N12�w

e
0 ¼

~Nwe
0, (32)

where

we
0 ¼ ½w

1
0 w1

0;x w1
0;y w2

0 w2
0;x w2

0;y w3
0 w3

0;x w3
0;y w4

0 w4
0;x w4

0;y�
T. (33)

The expressions for ~Ni can be found in Ref. [36]. The rotations y0x
; y0y

are originally interpolated in terms of
their values yi

0x
, yi

0y
at the nine nodes ði ¼ 1; 2; . . . ; 9Þ of a Lagrange element, namely, nodes 1–4 at the corners,

nodes 5–8 at the mid sides and node 9 at the center:

y0x
¼ N̄ye

0x
; y0y

¼ N̄ye
0y
, (34)

where

ye
0i ¼ ½y

1
0i y20i . . . y90i�

T; i ¼ x; y; N̄ ¼ ½N̄1 N̄2 . . . N̄9�. (35)

N̄i are the smoothed interpolation functions obtained from standard Lagrange interpolation functions
through a least-square fit [40]. The 18 nodal rotation variables yi

0x
, yi

0y
for nine nodes are related to deflection

vector we
0 of the four corner nodes by imposing 18 conditions on the former. Let ys and yn be the direction

derivatives of w along the tangent s to an edge and along its normal n, respectively. The constraints yi
0x
¼ wi

0;x
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and yi
0y
¼ wi

0;y are imposed at the four corner nodes i ¼ 1–4, and at the interior node 9, yielding ten conditions.
The remaining eight conditions are as follows:

1. Impose at mid-side nodes i of side jl joining corner nodes j and l (i ¼ 5–8) the constraints yi
s ¼ wi

0;s where
wi
0;s is obtained by considering the cubic variation of w along the side of length ajl as

wi
;s ¼ �

3

2ajl

ðw
j
0 � wl

0Þ �
1

4
ðw

j
0;s þ wl

0;sÞ

¼ �
3

2ajl

ðw
j
0 � wl

0Þ �
1

4
½ðw0;xsx þ w0;ysyÞ

j
þ ðw0;xsx þ w0;ysyÞ

l
�. (36)

2. Approximate the variation of yn to be linear along each side, i.e.,

yi
n ¼

1
2
ðyj

n þ yl
nÞ ) ðw0;xnx þ w0;ynyÞ

i
¼ 1

2
fðw0;xnx þ w0;ynyÞ

j
þ ðw0;xnx þ w0;ynyÞ

l
g. (37)

Thus, y0x
, y0y

are finally expressed in terms of we
0 as

y0x
¼ Gwe

0; y0y
¼ Hwe

0, (38)

where

G ¼ ½G1 G2 . . . G12�; H ¼ ½H1 H2 . . . H12�.

The expressions of the interpolation functions Gi and Hi are available in Ref. [36]. For the purpose
of comparison, the DKQ interpolation functions of Batoz and Tahar [41] are also employed for y0x

; y0y
. In this

case, y0x
; y0y

are originally interpolated using an eight-node serendipity element instead of the nine-
node Lagrange element, and the constraints y0x

¼ w0;x and y0y
¼ w0;y are not imposed in any interior point of

the element.
The generalized displacement vector Ue of the element is defined in terms of the nodal variables Ue

i of the
physical nodes, i ¼ 1; 2; 3; 4, and fj of the electric node as

Ue
i ¼ ½u

i
0x

ui
0y

wi
0 wi

0;x wi
0;y ci

0x
ci
0y

fli

c �
T; l ¼ 1; 2; . . . ; nf � 1,

UeT ¼ ½Ue
1
T Ue

2
T Ue

3
T Ue

4
T fj

�; j ¼ 1; 2; . . . ; nf. (39)

Using Eqs. (15), (30), (32) and (38), ū1, w0 and fj are expressed in terms of Ue as

ū1 ¼ NuUe; w0 ¼ NwUe; fj
¼ NfUe (40)

where

Nu ¼ ½N
1
u N2

u N3
u N4

u 0�Ue,

Nw ¼ ½N
1
w N2

w N3
w N4

w 0�Ue,

Nf ¼ ½0 0 0 0 1�Ue,

Ni
u ¼

Ni 0 0 0 0 0 0 0

0 Ni 0 0 0 0 0 0

0 0 �G3i�2 �G3i�1 �G3i 0 0 0

0 0 �H3i�2 �H3i�1 �H3i 0 0 0

0 0 0 0 0 Ni 0 0

0 0 0 0 0 0 Ni 0

2
666666666664

3
777777777775
,

Ni
w ¼ ½0 0 ~N3i�2

~N3i�1
~N3i 0 0 0�. (41)

The generalized strains ēi in Eq. (17) are expressed in terms of Ue as

ēi ¼ BiU
e; i ¼ 1; 2; 3; 4, (42)
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where Bi are the generalized strain–displacement matrices given by

Bi ¼ ½B
1
i B2

i B3
i B4

i 0� for i ¼ 1; 2; 3; B4 ¼ ½B
1
4 B2

4 B3
4 B4

4 B
f
4 �,

Bi
1 ¼

qNi

qx
0 0 0 0 0 0 0

0
qNi

qy
0 0 0 0 0 0

qNi

qy

qNi

qx
0 0 0 0 0 0

0 0 �
qG3i�2

qx
�
qG3i�1

qx
�
qG3i

qx
0 0 0

0 0 �
qH3i�2

qy
�
qH3i�1

qy
�
qH3i

qy
0 0 0

0 0 �
qG3i�2

qy
�

qH3i�2

qx
�
qG3i�1

qy
�

qH3i�1

qx
�
qG3i

qy
�

qH3i

qx
0 0 0

0 0 0 0 0
qNi

qx
0 0

0 0 0 0 0
qNi

qy
0 0

0 0 0 0 0 0
qNi

qx
0

0 0 0 0 0 0
qNi

qy
0

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

,

Bi
2 ¼

0 0 0 0 0 Ni 0 0

0 0 0 0 0 0 Ni 0

0 0 0 0 0 0 0 �
qNi

qx

0 0 0 0 0 0 0 �
qNi

qy

2
66666664

3
77777775
; Bi

3 ¼

0 0 0 0 0 0 0
qNi

qx

0 0 0 0 0 0 0
qNi

qy

2
664

3
775,

Bi
4 ¼

0 0 0 0 0 0 0 Ni

0 0 0 0 0 0 0 0

� �
; B

f
4 ¼

0

1

� �
. (43)

Substituting Eqs. (40) and (42) into Eq. (27), the contribution Te of one element to the area integral can be
obtained as

Te ¼ dUeT

Z
Ae
½NuTINu þNwTĪNw�dxdy €Ue þ dUeT

Z
Ae
½BT

1 AB1 þ BT
1 bB4 þ BT

2 ĀB2 þ BT
2 b̄B3

þ BT
3 b̄B2 þ BT

3 ĒB3 þ BT
4 b

TB1 þ BT
4 F̄B4�dxdy Ue � dUeT

Z
Ae
ðNT

wpz þ NT
fP

j
fÞdxdy

¼ dUeT½M̄
e €Ue þ K̄

e
Ue � P̄

e
�,

where M̄
e
, K̄

e
and P̄

e
are the element mass matrix, the element stiffness matrix and the consistent load vector.

The elements with one or more sides on the boundary will contribute to the line integral part of Eq. (20). For
the boundary conditions given in Eq. (29), this line integral is zero. However, there will be a contribution to
the load vector for other boundary conditions where non-zero stress resultants are prescribed. For example,
for an unconstrained edge with inplane edge forces, there will be contribution to the load vector for the dof
ue
0x
, ue

0y
for the nodes on that edge. Loads applied at nodes are added to P̄ at locations corresponding to their

global degree of freedom numbers. Summing up the contributions for all elements in Eq. (20), since the virtual
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generalized displacements are arbitrary, Eq. (20) yields

M̄ €U þ K̄U ¼ P̄, (44)

where M̄, K̄ and P̄ are the assembled counterparts of matrices M̄
e
, K̄

e
and P̄

e
. The physical nodes and the

electric node of each element are stored in an element connectivity matrix, and the global dof numbers of
element dof of physical nodes and electric nodes are stored in separate index matrices. Assembly of the
element stiffness, mass and load matrices then follows the standard procedure [42]. A 3� 3 Gauss integration
scheme is used for the numerical integration to obtain M̄

e
, K̄

e
and P̄

e
in view of a bi-cubic variation of w0.

At the surfaces with prescribed voltage (close circuit condition), electric potentials have known prescribed
values. At the surfaces with prescribed charge (open circuit condition), the electric loads are known (zero
electric charge, i.e.,

R
Ae

Dz dxdy ¼ 0, Ae being the area of the electrode), but the electric potentials are
unknown. The system vector U is partitioned into vectors of mechanical displacements Ū , unknown voltages
Fs and known input actuation voltages Fa. Thus, Eq. (44) can be partitioned and arranged as

Muu 0 0

0 0 0

0 0 0

2
64

3
75

€̄U
€Fs

€Fa

8><
>:

9>=
>;þ

Kuu Kus Kua

Ksu Kss Ksa

Kau Kas Kaa

2
64

3
75

Ū

Fs

Fa

8><
>:

9>=
>; ¼

P̄

Qs

Qa

8><
>:

9>=
>;. (45)

Eq. (45) yields the output potentials as

Fs ¼ �ðK
ssÞ
�1
½KsuŪ þ KsaFa �Qs�. (46)

Substituting Eq. (46) into Eq. (45) and introducing Rayleigh damping with damping matrix Cuu ¼

a1Muu þ a2Kuu yields

Muu €̄U þ Cuu _̄U þ ½Kuu � KusðKssÞ
�1Ksu�Ū ¼ P̄� KusðKssÞ

�1Qs � ½K
ua � KusðKssÞ

�1Ksa�Fa. (47)

For undamped free vibration, the damping matrix Cuu and the right-hand side vector of the above equation
are set to zero. The resulting generalized eigenvalue problem is solved using the subspace iteration method [43]
to obtain the undamped circular natural frequencies on and the mode shapes. For a transient response,
Eq. (47) can be solved using the Newmark direct time integration scheme [43]. The advantage of first
partitioning the electric potential vector F into Fs and Fa, and then carrying out the condensation as per
Eqs. (46) and (47) is that it can model the response of the structure under any electric boundary conditions,
namely, in the active mode (close circuit), the sensory mode (open circuit) and the combined ‘active-sensory’
mode (some electrodes in an open circuit and some in a close circuit). In contrast, if the entire electric potential
vector F is condensed out as in Ref. [12], the resulting problem would give only the open-circuit response.
Vasques and Rodrigues [8], on the other hand, adopted different static condensations for electroded open
circuit, non-electroded open circuit and close circuit conditions, without the possibility of a combined mode.

5. Numerical results

5.1. Validation and comparison with other solutions

For validation of the present formulation of the discrete Kirchhoff improved zigzag theory-based
(DKIZIGT) element for free vibration analysis and the computer program developed, the following two
problems are considered for which results have been presented by other researchers using different theories
and finite elements. In addition, the relative accuracy of the present element is also assessed in direct
comparison with the exact 3D piezoelasticity solution [23,24] or the 3D FE solution obtained using the
commercial software ABAQUS.

5.1.1. Piezoelectric bimorph plate

A rectangular piezoelectric bimorph made of two identical layers of PZT-4 piezoceramics with the poling
direction along z-axis, which was analyzed by Wang [5], is considered here. The length a and width b of the
plate are 25 and 12.5mm, respectively. The plate is simply supported at opposite edges at x ¼ 0; a with
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Table 1

Natural frequencies f n(Hz) of a bimorph plate

Entity Mode Close circuit Open circuit

3D FE Present FSDT FE 3D FE Present FSDT FE

(ABAQUS) IZIGT FE (Wang [5]) (ABAQUS) IZIGT FE (Wang [5])

f 1 Flexure 5938.5 5937.6 6258 6105 6114.5 6433

f 2 Flexure 14,545 15,498 13,833 14,619 15,564 13,909

f 3 Flexure 22,871 22,801 23,814 23,459 23,523 24,473

f 4 Inplane shear 23,785 27,570 26,612 24,139 28,072 26,967

f 5 Extension 28,575 32,893 – 29,459 34,279 –

f 6 Flexure 33,805 35,078 33,057 34,094 35,462 33,452

f 7 Flexure 48,258 47,875 49,664 49,187 49,294 50,880
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w0 ¼ 0; u0y
¼ 0 at x ¼ 0; a and u0x

¼ 0 at x ¼ 0. The other two edges are free. The material properties of
PZT-4 are taken as given in Ref. [5]:

½C11;C22;C33;C12;C23;C31;C44;C55;C66� ¼ ½139; 139; 115; 77:8; 74:3; 74:3; 25:6; 25:6; 30:6�GPa,

½ðe31; e32; e33; e15; e24Þ; ðZ11; Z22; Z33Þ� ¼ ½ð�5:2;�5:2; 15:1; 12:7; 12:7ÞC=m
2; ð13:06; 13:06; 11:51ÞnF=m�

and r ¼ 7600Kg=m3, where Cij and eij are the stiffness coefficients and piezoelectric stress constants. The
interfaces between the two PZT layers are grounded. The natural frequencies f nð¼ on=2pÞ are obtained for the
plate for span-to-thickness ratio, S ¼ a=h ¼ 10, for both close circuit ðf1

¼ fnf ¼ 0Þ and open circuit
conditions on the top and bottom surfaces. The natural frequencies for the first seven modes predicted by the
present DKIZIGT element with a mesh size of 16� 16 are compared in Table 1with the FSDT FE results of
Wang [5]. Wang’s results are obtained using 200 eight-node elements and 10 sublayer discretization of each
piezoelectric layer for f. The present FE results are obtained using IDKQ interpolation for the deflection. To
assess the relative accuracy of these results, a coupled 3D FE analysis is performed using a 20-node
piezoelectric solid element (C3D20RE) in ABAQUS with a mesh size of 40� 20� 8 (6400 elements), yielding
converged results. The corresponding results are also listed in Table 1. It is observed that the present results
are in good agreement with those of Wang [5] for both close and open circuit frequencies. However, in
comparison with the 3D FE solution, the present IZIGT FE yields far more accurate results for f n than the
FSDT FE [5] for the flexural modes 1, 3 and 7, which correspond to bending along the x-direction only. The
maximum percent error in the present IZIGT FE results for frequencies of these modes is only 0.8% and 0.3%
for the close and open circuit conditions, respectively, whereas the maximum error in the FSDT FE for the
above modes is 5.4% for both electric boundary conditions. For the bi-directional bending modes 2 and 6, the
error in the present IZIGT results is marginally higher than that for the FSDT. However, it may be due to a
difference in the boundary conditions regarding u0y ¼ 0 considered here and in Ref. [5], wherein the same has
not been specified. Wang’s FSDT FE missed the fifth mode which is an extension mode. It may be noted that
the open circuit frequencies are higher than the close circuit ones for all modes. This can be understood from
Eq. (47), by observing that the effective stiffness matrix becomes modified by the electromechanical stiffness
corresponding to the open circuit potentials Fs.

It is pertinent to note here that the number of electric dof in the present model for this problem is
2� 17� 17þ 3 ¼ 581. For a similar mesh, the FE model of Wang [5] with 10 sublayers in each layer, this
number would be 21� 16� 16 ¼ 5376. The number of electric potential dof associated with the layer surfaces
is only 3 in the present modelling using an electric node for the close circuit boundary condition, whereas for
the traditional concept of nodal/elemental electric variables, the same would be 867/768.

5.1.2. Hybrid composite plate of Heyliger and Saravanos [23]

The simply supported square hybrid plate analyzed by Heyliger and Saravanos [23], which consists of a
substrate of a three-layer cross-ply graphite-epoxy composite ð0�=90�=0�Þ of material 1 with two layers of
PZT-4 bonded to its top and bottom surfaces, is considered next. The thickness of each layer of the composite
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Table 2

Material properties

Property Unit Mat. 1 Mat. 2 Mat. 3 Mat. 4 Mat. 5 Mat. 6 PZT-4 PZT-5A

Ref. [23] Ref. [30] Ref. [23] Ref. [29]

Y 1 GPa 132.38 6.9 224.25 172.5 131.1 0.0002208 81.3 61.0

Y 2 GPa 10.756 6.9 6.9 6.9 6.9 0.0002001 81.3 61.0

Y 3 GPa 10.756 6.9 6.9 6.9 6.9 2.760 64.5 53.2

G12 GPa 5.6537 1.38 56.58 3.45 3.588 0.01656 30.6 22.6

G23 GPa 3.606 1.38 1.38 1.38 2.3322 0.4554 25.6 21.1

G31 GPa 5.6537 1.38 56.58 3.45 3.588 0.5451 25.6 21.1

n12 0.24 0.25 0.25 0.25 0.32 0.99 0.329 0.35

n13 0.24 0.25 0.25 0.25 0.32 3� 10�5 0.432 0.38

n23 0.49 0.25 0.25 0.25 0.49 3� 10�5 0.432 0.38

r kg/m3 1 1578 1578 1578 1000 70 1 7600

d31 pm/V �123.04748 �171

d32 pm/V �123.04748 �171

d33 pm/V 289.0604 374

d15 pm/V 496.875 584

d24 pm/V 496.875 584

Z11 nF/m 0.030975 13.0537 15.3

Z22 nF/m 0.02655 13.0537 15.3

Z33 nF/m 0.02655 11.505 15.0
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sublaminate is 0.267h and that of each PZT layer is 0:1h. The properties of material 1, PZT-4 and other
materials considered in this study are listed in Table 2.The outer surfaces of the piezoelectric layers, and all the
four edges of the plate are grounded. Two sets of electric boundary conditions are considered for the inner
surfaces of the PZT-4 layers: a close circuit condition with f ¼ 0 and an open circuit condition with zero
electric charge. Since no equipotential condition has been imposed in Ref. [23] on the piezoelectric surfaces
under an open circuit condition, the induced electric potential will be nonuniform over the surfaces. This is
modelled by associating each element with a separate electric node.

The natural frequency parameter f̄ n ¼ onr1=2a2=ð2� 103phÞ ½Hzðkg=mÞ1=2� for the first six modes, predicted
by the present IZIGT FE with different mesh sizes, is compared in Table 3 with the 3D exact piezoelasticity
solution of Heyliger and Saravanos [23], the ZIGT FE solution of Topdar et al. [31], the DLT FE solutions
presented by Saravanos et al. [15] and Robaldo et al. [32] and Murakami-type first- and third-order ZIGT
solutions [32]. The results based on the ITOT FE are also listed for comparison. The results are presented for
two values of S: 4 and 50, with a ¼ 1m. For simply supported plates, the flexural modes take the form
w0 ¼ wmn

0 sinðmpx=aÞ sinðnpy=bÞ. The values of ðm; nÞ corresponding to the flexural modes are shown in
Table 3. The second mode for S ¼ 4 is found to be an inplane shear mode, whereas for S ¼ 50, all the six
modes are flexural ones. The four-node rectangular element of Topdar et al. [31] has 32 mechanical dof per
element. The DLT FE results of Saravanos et al. [15] were presented with an 8� 8 mesh considering 7 and 20
discrete layers across the laminate thickness. The results of Robaldo et al. [32] are presented with nine-node
elements with a 4� 4 mesh. For S ¼ 50, the results are also compared with the available FSDT FE solution
obtained using eight- [18] and nine-node [22] elements. Heyliger and Saravanos [23] presented exact 3D results
only for the fundamental flexural frequency. The exact 3D results for frequencies of other flexural modes have
been obtained here using the computer program developed in Ref. [24]. The mode number ðm; nÞ is arranged as
per the exact 3D solution. Similar results for an open circuit condition are presented in Table 4 for S ¼ 50. It is
observed that the 3D solution of Heyliger and Saravanos [23] for the fundamental frequency f̄ 1 matches very
well with the present 3D results for the open circuit condition, but differs for the close circuit condition.
However, for the close circuit condition, the present 3D results are in excellent agreement with the DLT FE
results presented by the same researchers [15]. Also, the predicted difference between the two electric boundary
conditions for the DLT results (and also for the present IZIGT results) is consistent with the present exact 3D
results, whereas the difference is much smaller in Ref. [23]. This anomaly was duly noted by Saravanos et al.
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Table 3

Natural frequencies f̄ n of a square hybrid composite plate under a close circuit condition

S f̄ 1 f̄ 2 f̄ 3 f̄ 4 f̄ 5 f̄ 6

4 Flexure mode no. ðm; nÞ ð1; 1Þ ISM ð1; 2Þ ð2; 1Þ ð2; 2Þ ð1; 3Þ
3D exact (H & S [23]) 145.339 – – – – –

3D exact [24] 141.460 – 253.63 263.89 343.25 383.29

IZIGT analytical [30] 141.225 – 253.32 263.91 343.60 383.75

Present IZIGT FE (8� 8) 140.683 207.66 252.36 263.22 342.50 385.72

Present IZIGT FE (12� 12) 140.977 206.92 252.77 263.51 342.53 383.75

Present IZIGT FE ð16� 16) 141.083 206.66 252.98 263.66 342.87 383.57

Present TOT FE (16� 16) 145.332 206.66 265.35 271.35 357.65 408.18

ZIGT FE [31](8� 8) 142.86 207.66 256.24 267.04 352.70 390.38

ZIGT FE [31] (12� 12) 142.78 206.92 255.48 266.09 348.21 386.90

ZIGT FE [31] (16� 16) 142.76 206.67 255.23 265.79 346.81 385.90

DLT (w-constant) [15]a 142.469 – – – – –

DLT (w-constant) [15]b 142.221 – – – – –

DLT (w-variable) [15]a 142.942 – – – – –

DLT (w-variable) [15]b 142.630 – – – – –

DLT (w-variable) [32] 145.905 – – – – –

ZIGT (Murakami—first order) [32] 161.067 – – – – –

ZIGT (Murakami—third order) [32] 146.939 – – – – –

50 Flexure mode no. ðm; nÞ ð1; 1Þ ð1; 2Þ ð2; 1Þ ð2; 2Þ ð1; 3Þ ð3; 1Þ
3D exact (H & S [23]) 245.941 – – – – –

3D exact [24] 232.458 523.07 663.40 913.67 1019.6 1366.0

IZIGT analytical [30] 232.456 523.01 663.57 913.66 1019.4 1366.9

Present IZIGT FE (8� 8) 231.513 519.69 660.20 900.05 1014.0 1361.5

Present IZIGT FE (12� 12) 232.032 521.45 661.98 907.20 1016.4 1363.9

Present IZIGT FE (16� 16) 232.217 522.12 662.66 909.95 1017.6 1365.1

Present TOT FE (16� 16) 232.340 522.74 663.73 911.81 1020.0 1369.7

ZIGT FE [31] (8� 8) 237.76 537.40 674.83 934.08 1048.6 1388.6

ZIGT FE [31] (12� 12) 237.76 537.33 674.72 933.95 1047.7 1387.2

ZIGT FE [31] (16� 16) 237.76 537.32 674.70 933.93 1047.6 1387.0

DLT (w-constant) [15]a 236.785 – – – – –

DLT (w-constant) [15]b 236.784 – – – – –

DLT (w-variable) [15]a 237.383 – – – – –

DLT (w-variable) [15]b 237.109 – – – – –

DLT (w-variable) [32] 248.912 – – – – –

ZIGT (Murakami—first order) [32] 276.374 – – – – –

ZIGT (Murakami—third order) [32] 248.677 – – – – –

FSDT FE (9 node) [22] 206.304 519.444 663.336 907.636 1020.10 –

FSDT FE (8 node) [18] 246.815 563.075 700.050 979.075 1105.95 –

ISM—inplane shear mode; H & S—Heyliger and Saravanos.
a7 layers.
b20 layers.
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[15], which could not be explained then. It is now clear that their 3D results for close circuit frequencies are
erroneous. Therefore, the present 3D results for frequencies are used as benchmarks.

The comparison of the present IZIGT FE results with other available elements reveals that the present
DKIZIGT element yields the most accurate results with a maximum error of only 0.6% with respect to the 3D
solution for a 16� 16 mesh, for all flexural modes. The corresponding maximum error in the ITOT FE is
6.5%. The first-order Murakami-type ZIGT is the least accurate with an error of up to 18.9% for the
fundamental frequency, f̄ 1. The present element is also the most computationally efficient among all with only
28 mechanical dof per element. To compare the relative performance of the present element with the 32-dof
rectangular element of Ref. [31], which is based on the third-order zigzag theory, analytical (ana.) solutions for
the IZIGT of Kapuria and Achary [30] are also listed in Tables 3 and 4. The latter IZIGT is based on a
sublayerwise linear description of f across the thickness, and converged results are obtained with 4 sublayers
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Table 4

Natural frequencies f̄ mn of a square hybrid composite plate under an open circuit condition (S ¼ 50)

f̄ 1 f̄ 2 f̄ 3 f̄ 4 f̄ 5 f̄ 6

Flexure mode no. ðm; nÞ (1.1) (1.2) (2.1) (2.2) (1.3) (3.1)

3D exact (H & S [23]) 245.942 – – – – –

3D exact [24] 245.941 559.41 691.74 965.20 1091.0 1416.9

IZIGT analytical [30] 245.935 559.35 691.87 965.14 1090.8 1417.7

Present IZIGT FE ð8� 8) 244.565 553.33 686.43 945.29 1075.5 1405.6

Present IZIGT FE ð12� 12) 245.320 556.56 689.34 955.82 1083.2 1411.5

Present IZIGT FE ð16� 16) 245.588 557.76 690.43 959.80 1086.4 1414.0

Present TOT FE (16� 16) 245.734 558.55 691.61 961.98 1089.4 1419.0

DLT (w-constant) [15]a 259.103 – – – – –

DLT (w-constant) [15]b 259.102 – – – – –

DLT (w-variable) [15]a 259.630 – – – – –

DLT (w-variable) [15]b 259.895 – – – – –

FSDT FE (9 node) [22] 245.349 558.988 694.196 962.017 1093.006 –

FSDT FE (8 node) [18] 246.912 563.600 700.900 980.725 1108.125 –

a7 layers.
b20 layers.
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in each piezoelectric layer and 2 sublayers in each elastic layer. It can be observed from Table 3 that the
present DKIZIGT element with an 8� 8 mesh (567 mechanical dof) yields more accurate results with respect
to the analytical solution than the rectangular element with even a 16� 16 mesh (2312 mechanical dof), the
maximum error for the first six frequencies being 1.5% and 2.8%, respectively, for the two elements, for
S ¼ 50. With the 16� 16 mesh, the DKIZIGT element predicts the frequencies with a maximum error of only
0.4% with respect to the analytical solution.

5.2. Convergence study with DKQ and IDKQ interpolation functions

In order to compare the convergence behavior of the present DKIZIGT element with DKQ and IDKQ
interpolation functions, the simply supported hybrid composite plate discussed in the previous section is
considered. The plate is modelled with varying mesh size N �N. The error in the IZIGT FE results for natural
frequencies is computed with reference to the analytical solution of IZIGT of Ref. [30]. The percent error of
the predicted natural frequencies on for the first three modes is plotted in Fig. 4 against the mesh size N for
thick and thin plates with S ¼ 4 and 50, respectively. It is observed that the IDKQ interpolation yields faster
convergence and gives more accurate results than the DKQ interpolation for the same mesh size. Similar
behavior has been observed for the ITOT-based element too. Therefore, in all previous and subsequent
problems, the results are presented with the IDKQ interpolation of w0, and the DKIZIGT element refers to
the IZIGT-based element with IDKQ interpolation functions.

5.3. Other plate configurations for the present study

The accuracy of the present quadrilateral elements for improved ZIGT and TOT based on the IDKQ
interpolation of w0 is also assessed for a hybrid test composite plate (a) with plies of highly inhomogeneous
stiffness in tension and shear, and a hybrid soft-core sandwich plate (b), which were analyzed by Kapuria and
Achary [30]. Both the hybrid laminates have two PZT-5A layers, each of thickness 0:1h, bonded to the top and
bottom of their elastic substrate. The interfaces of the piezoelectric layers and the substrate are grounded. The
outer surface of the top piezoelectric layer is grounded and that of the bottom piezoelectric layer is in the open
circuit condition. The substrate of plate (a) has six plies of thickness ð0:08h; 0:12h; 0:2h; 0:2h; 0:12h; 0:08hÞ of
materials ð2=4=3=3=4=2Þ with orientations ð0�=0�=90�=0�=0�=0�Þ. The substrate of plate (b) is a five-layer
sandwich laminate ð0�=90�=Core=90�=0�Þ with graphite-epoxy faces ð0�=90�Þ of material 5 and a soft core of
material 6. The thickness of each ply of the face sheet is 0:04h and that of the core is 0:64h.
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Fig. 4. Convergence study with DKQ and IDKQ interpolations for a square hybrid composite plate.
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The circular frequencies on are nondimensionalized as ōn ¼ onaSðr0=Y 0Þ
1=2 with Y 0 ¼ 6:9GPa, and r0 ¼

1578 kg=m3 for plate (a) and r0 ¼ 1000 kg=m3 for plate (b). For all round simply supported plates, ōn

is redesignated as ōmn referring to the Fourier mode ðm; nÞ for the purpose of comparison with the
analytical solution.

5.4. Hybrid test composite plate

The natural frequencies for flexural modes of a square simply supported hybrid test plate (a) with layers of
highly inhomogeneous stiffness are obtained using mesh sizes N �N ¼ 6� 6, 8� 8, 12� 12 and 16� 16, for
four values of S: 5, 10, 20 and 1000. The IZIGT FE results are compared in Table 5 with the IZIGT analytical
solution [30], the exact 3D piezoelasticity solution [30] and the TOT FE results obtained with a 16� 16 mesh.
The present IZIGT FE results with an 8� 8 and finer mesh match very well with the analytical IZIGT
solution for all cases, with the error lying in the range of 0.01–0.5% for the 16� 16 mesh. The excellent match
of the present FE results with the analytical solution for the extremely thin plate with S ¼ 1000 establishes
that the present elements based on the IZIGT and ITOT are free from shear locking. In comparison with the
3D exact solution, the DKIZIGT element with the 16� 16 mesh predicts the fundamental natural frequency
ō11 with an error of only 0.5%, 0.15% and 0.02% for S ¼ 5; 10 and 20, respectively. The corresponding error
for the ITOT for this highly inhomogeneous plate is 42.4%, 15.5% and 4.4%, respectively. For the higher
modes, the error in the IZIGT predictions is within 1.7% for a moderately thick plate with S ¼ 10, whereas
the corresponding error for the ITOT is as high as 52.5%. Even for a thinner laminate with S ¼ 20, the
maximum error in the higher mode frequencies is very large (23.0%) for the ITOT, which is only 0.7% for the
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Table 5

Natural frequencies ōmn of a square hybrid test plate (a)

S Entity Exact 3D [30] IZIGT ana. [30] IZIGT FE ITOT FE

6� 6 8� 8 12� 12 16� 16 16� 16

5 ō11 7.4148 7.4489 7.4094 7.4290 7.4439 7.4493 10.555

ō21 14.714 15.169 15.224 15.181 15.165 15.162 24.634

ō22 18.643 19.210 19.418 19.256 19.222 19.225 33.106

ō31 23.621 26.030 27.260 26.590 26.215 26.103 42.175

10 ō11 10.034 10.055 9.9834 10.016 10.040 10.049 11.593

ō21 22.397 22.585 22.431 22.489 22.543 22.564 30.286

ō22 29.659 29.796 29.275 29.449 29.638 29.716 42.087

ō31 37.741 38.364 38.783 38.485 38.384 38.368 57.559

20 ō11 11.418 11.427 11.339 11.377 11.406 11.416 11.920

ō21 29.024 29.169 28.887 28.999 29.093 29.129 32.620

ō22 40.137 40.221 39.203 39.594 39.933 40.064 46.218

ō31 53.580 54.041 53.862 53.832 53.923 53.975 65.881

1000 ō11 12.050 12.050 11.954 11.995 12.025 12.036 12.036

ō21 33.615 33.615 33.259 33.399 33.514 33.558 33.559

ō22 48.198 48.197 46.867 47.382 47.813 47.977 47.980

ō31 69.932 69.932 69.351 69.499 69.704 69.796 69.805

Table 6

Natural frequencies ōmn of a simply supported square hybrid sandwich plate (b)

S Entity Exact 3D [30] IZIGT ana. [30] IZIGT FE ITOT FE

6� 6 8� 8 12� 12 16� 16 16� 16

5 ō11 4.5233 4.5260 4.5081 4.5156 4.5221 4.5245 5.5685

ō21 7.8958 7.9455 8.0375 7.9795 7.9572 7.9529 9.7324

ō22 10.292 10.436 11.044 10.662 10.503 10.470 12.624

ō31 11.950 12.144 13.042 12.503 12.267 12.209 14.474

10 ō11 7.3390 7.3302 7.2768 7.3000 7.3175 7.3237 8.4284

ō21 13.880 13.887 13.795 13.818 13.847 13.860 16.656

ō22 18.010 17.918 18.034 17.987 18.032 18.062 22.213

ō31 21.236 21.265 21.614 21.347 21.275 21.270 26.005

20 ō11 9.7440 9.7372 9.6566 9.6913 9.7171 9.7263 10.318

ō21 21.357 21.333 21.106 21.194 21.270 21.299 23.677

ō22 29.356 29.318 28.629 28.874 29.107 29.200 33.598

ō31 35.693 35.654 35.565 35.500 35.563 35.603 41.312
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IZIGT. This confirms the superiority of the IZIGT over the ITOT having the same number of dof and the
inapplicability of the latter for hybrid plates with plies of drastically different material properties. It is evident
that the large error in the ITOT is essentially due to the absence of layerwise terms in the assumed expansion
of the in-plane displacements along the thickness direction.

5.5. Simply supported hybrid sandwich plate

A simply supported square soft-core sandwich plate (b) with piezoelectric layers bonded to the top and
bottom is analyzed next, to obtain the natural frequencies of four flexural modes ðm; nÞ ¼ ð1; 1Þ; ð2; 1Þ; ð2; 2Þ
and (3,1). The IZIGT FE results for dimensionless circular frequencies ōmn obtained using various mesh sizes
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are compared in Table 6 with the exact 3D solution, the IZIGT analytical solution [30] and the ITOT FE
results. It is observed that the natural frequencies predicted by the IZIGT FE with a 16� 16 mesh are in
excellent agreement with the analytical IZIGT solution with a maximum difference of 0.8% for all four modes
and three values of S. The IZIGT FE predicts the natural frequencies very accurately in comparison with the
exact 3D piezoelasticity solution, even for a thick hybrid sandwich plate with S ¼ 5 with a maximum error of
2.2% for the four flexural modes. In contrast, the ITOT gives highly erroneous results for moderately thick
and even thinner plates. For a moderately thick plate with S ¼ 10, the % error in the FE results obtained with
a 16� 16 mesh for the frequencies of the first four flexural modes ranges between 14.8% and 23.3% for the
ITOT, whereas the corresponding error for the IZIGT is within 0.3%. Even for a thin plate with S ¼ 20, the
maximum error in the ITOT for the four frequencies is as high as 15.7%.
Table 7

Natural frequencies ōn of a square hybrid sandwich plate (b) with boundary conditions CSSS and CSCS

Boundary condition S Entity Mode 3D FE IZIGT FE ITOT FE

(ABAQUS) 12� 12 16� 16 20� 20 24� 24 24� 24

CSSS 5 ō1 Flexure 4.6958 4.7453 4.7339 4.7287 4.7259 5.7792

ō2 Flexure 7.7854 7.9243 7.8981 7.8863 7.8801 9.6711

ō3 Flexure 8.2447 8.4636 8.4148 8.3933 8.3821 10.067

ō4 Inplane shear 10.286 10.317 10.304 10.298 10.295 10.295

ō5 Flexure 10.556 10.991 10.880 10.834 10.810 12.900

ō6 Flex-ure 11.896 12.470 12.370 12.328 12.306 14.314

10 ō1 Flexure 7.7901 7.8327 7.8173 7.8095 7.8050 9.1217

ō2 Flexure 13.413 13.449 13.437 13.431 13.428 16.556

ō3 Flexure 14.388 14.564 14.506 14.478 14.462 17.401

ō4 Flexure 18.434 18.624 18.565 18.537 18.522 22.736

ō5 Flexure 20.228 20.365 20.323 20.306 20.297 25.459

ō6 Inplane shear 20.575 20.634 20.608 20.596 20.590 20.590

20 ō1 Flexure 10.998 11.031 11.019 11.012 11.007 11.925

ō2 Flexure 20.932 20.919 20.924 20.925 20.924 23.840

ō3 Flexure 22.892 23.102 23.029 22.988 22.962 26.073

ō4 Flexure 30.256 30.332 30.314 30.299 30.288 35.134

ō5 Flexure 33.771 33.727 33.739 33.745 33.747 40.498

ō6 Flexure 37.003 37.523 37.334 37.236 37.178 43.612

CSCS 5 ō1 Flexure 4.9036 5.0191 4.9889 4.9750 4.9677 6.0238

ō2 Flexure 7.8832 8.1034 8.0489 8.0242 8.0110 9.7798

ō3 Flexure 8.6195 9.0389 8.9304 8.8828 8.8578 10.404

ō4 Inplane shear 10.286 10.317 10.304 10.298 10.295 10.295

ō5 Flexure 10.847 11.575 11.358 11.265 11.216 13.194

ō6 Flexure 11.964 12.631 12.496 12.439 12.409 14.389

10 ō1 Flexure 8.2930 8.4189 8.3748 8.3528 8.3404 9.8758

ō2 Flexure 13.588 13.716 13.672 13.649 13.637 16.826

ō3 Flexure 14.885 15.304 15.161 15.092 15.054 18.099

ō4 Flexure 18.788 19.279 19.108 19.026 18.981 23.223

ō5 Flexure 20.308 20.541 20.464 20.429 20.410 25.590

ō6 Inplane shear 20.575 20.634 20.608 20.596 20.590 20.590

20 ō1 Flexure 12.416 12.553 12.505 12.477 12.461 13.824

ō2 Flexure 21.471 21.563 21.532 21.513 21.501 24.619

ō3 Flexure 24.345 24.917 24.716 24.607 24.542 28.381

ō4 Flexure 31.162 31.631 31.474 31.386 31.331 36.631

ō5 Flexure 34.000 34.060 34.037 34.024 34.015 40.855

ō6 Flexure 38.284 39.531 39.076 38.845 38.708 45.803

CSSS: clamped at x ¼ 0, simply supported at x ¼ a, y ¼ 0, b. CSCS: clamped at x ¼ 0; a, simply supported at y ¼ 0; b.
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5.6. Hybrid sandwich plate with non-simply supported boundary conditions

The square hybrid sandwich plate (b) studied above is also analyzed for two sets of non-simply supported
boundary conditions, namely, CSSS (one edge clamped and the remaining three simply supported) and CSCS
(two opposite edges clamped and the other two simply supported). The present ZIGT FE results for the first
six natural frequencies, obtained with 12� 12, 16� 16, 20� 20 and 24� 24 meshes for S ¼ 5; 10 and 20, are
compared in Table 7 with the converged 3D FE results of ABAQUS obtained using 32,000 [40 (length)� 40
Fig. 5. 3D FE results for the first six mode shapes of a CSSS hybrid sandwich plate (b) with S ¼ 10.
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Fig. 6. IZIGT FE results for the first six mode shapes of a CSSS hybrid sandwich plate (b) with S ¼ 10.
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(width)� 20 (thickness)] 20-node piezoelectric/elastic solid elements. The FE results of ITOT, obtained with a
24� 24 mesh, are also presented to assess the accuracy of the ITOT. It is observed that for these boundary
conditions too, the present DKIZIGT element predicts the natural frequencies very accurately with respect to
the 3D FE solution for all six modes, the maximum percent error for the 24� 24 mesh being 3.7, 1.1 and 1.1,
respectively, for S ¼ 5; 10 and 20. In contrast, the corresponding maximum error for the ITOT is 24.2%,
26.0% and 20.2% for S ¼ 5; 10 and 20, respectively. Even for the fundamental frequency of a thin plate with
S ¼ 20, the error in the ITOT is 11.3% and 8.4% for boundary conditions CSCS and CSSS, respectively.
Thus, while the accuracy of the IZIGT for the free vibration response of hybrid sandwich plates with SX5 is
established for all boundary conditions, the ITOT should not be used for free vibration analysis of even thin
Fig. 7. 3D FE results for the first six mode shapes of a CSCS hybrid sandwich plate (b) with S ¼ 10.
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hybrid sandwich plates with S ¼ 20. The mode shapes for the first six modes obtained from the 3D FE
analysis and the present IZIGT FE analysis (with 24� 24 mesh) for S ¼ 10 are shown in Figs. 5 and 6 for the
CSSS plate and in Figs. 7 and 8 for the CSCS plate. The comparison shows that the mode shapes predicted by
the present IZIGT FE are in excellent agreement with those of 3D FE analysis, for flexural as well as inplane
shear modes. It may be seen from Table 7 that the IZIGT and the ITOT give the same results for frequencies
of inplane shear modes.
5.7. Skew hybrid plate

In order to assess the performance of the DKIZIGT element for the free vibration response of non-
rectangular plates, a skew, cantilever, hybrid sandwich plate (Fig. 9) of laminate configuration (b) is
considered with skew angle a ¼ 30� and 45�. The IZIGT FE results for the first six natural frequencies ōn

obtained with different mesh sizes are compared in Table 8 with the converged 3D FE results of ABAQUS
obtained with a 40� 40� 20 mesh. The results of ITOT FE for the 24� 24 mesh are also listed for
comparison. As before, the IZIGT FE results are in very good agreement with the 3D FE solution for both
clamped
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Fig. 9. Geometry of a skew plate with an (N �N) FE mesh.

Table 8

Natural frequencies ōn of a cantilever, skew hybrid plate (b) with S ¼ 10

Skew angle a Entity Mode 3D FE IZIGT FE ITOT FE

(ABAQUS) 12� 12 16� 16 20� 20 24� 24 24� 24

30� ō1 Flexure 1.8274 1.8462 1.8410 1.8382 1.8365 1.9757

ō2 Flexure 3.5752 3.6152 3.6039 3.5980 3.5944 4.0016

ō3 Flexure 7.5377 7.7271 7.6775 7.6518 7.6366 8.9183

ō4 Inplane shear 8.1160 8.3266 8.2664 8.2329 8.2120 8.2122

ō5 Flexure 9.0118 9.0942 9.0750 9.0652 9.0595 10.431

ō6 Flexure 12.151 12.254 12.230 12.218 12.211 14.115

45� ō1 Flexure 1.9524 1.9915 1.9811 1.9752 1.9715 2.1271

ō2 Flexure 4.3844 4.4336 4.4212 4.4144 4.4101 4.9442

ō3 Inplane shear 7.9729 8.5114 8.3398 8.2475 8.1903 8.1908

ō4 Flexure 8.1624 8.4903 8.4151 8.3707 8.3424 9.5370

ō5 Flexure 9.7427 9.8428 9.8219 9.8117 9.8059 11.357

ō6 Flexure 13.657 13.803 13.773 13.759 13.752 16.215
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Fig. 10. 3D FE results for the first six mode shapes of a cantilever skew hybrid plate (b) with a ¼ 30�.
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Fig. 11. IZIGT FE results for the first six mode shapes of a cantilever skew hybrid plate (b) with a ¼ 30�.
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skew angles with a maximum error of 2.2% for the flexural modes, but the ITOT solution is quite erroneous
with a maximum error of 18.7%. The mode shapes of the skew plate predicted by the 3D FE and the present
IZIGT are plotted in Figs. 10–13 for the six modes for both the skew angles. The present predictions are in
excellent agreement with the 3D FE solution. It is observed that modes 3 and 4 become interchanged as the
skew angle changes from 30� to 45�.
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Fig. 12. 3D FE results for the first six mode shapes of a cantilever skew hybrid plate (b) with a ¼ 45�.
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Fig. 13. IZIGT FE results for the first six mode shapes of a cantilever skew hybrid plate (b) with a ¼ 45�.
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5.8. Effect of segmentation of the sensor surface

The free vibration response of a cantilever, rectangular, hybrid sandwich plate (b) with one edge at x ¼ 0
clamped and other edges free is obtained for three electric boundary conditions: (i) both top and bottom
surfaces grounded (close), (ii) top surface grounded and bottom surface in an open circuit condition
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Fig. 14. Hybrid plate (b) with 5� 2 electrode segments of the sensor surface.

Table 9

Effect of number of electrodes on ōn for a cantilever hybrid plate (b)

Condition Entity Mode Number of electrodes

1 2� 2 5� 2 5� 4 10� 4

Close ō1 Flexure 1.8156 – – – –

ō2 Twisting 4.4576 – – – –

ō3 Extension 5.7086 – – – –

ō4 Flexure 7.4450 – – – –

ō5 Twisting 12.685 – – – –

ō6 Flexure 15.616 – – – –

Open–close ō1 Flexure 1.8311 1.8400 1.8434 1.8435 1.8443

ō2 Twisting 4.4576 4.4581 4.4588 4.4589 4.4593

ō3 Extension 5.7086 5.7535 5.7582 5.7713 5.7724

ō4 Flexure 7.4646 7.4652 7.4975 7.4976 7.5048

ō5 Twisting 12.685 12.688 12.695 12.696 12.699

ō6 Flexure 15.627 15.662 15.688 15.688 15.708

Open ō1 Flexure 1.8465 1.8648 1.8719 1.8721 1.8737

ō2 Twisting 4.4576 4.4586 4.4601 4.4602 4.4612

ō3 Extension 5.7086 5.7987 5.8079 5.8341 5.8363

ō4 Flexure 7.4848 7.4856 7.5500 7.5502 7.5647

ō5 Twisting 12.685 12.690 12.706 12.707 12.713

ō6 Flexure 15.639 15.706 15.759 15.760 15.800
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(open-close) and (iii) both top and bottom surfaces in an open circuit condition (open). The plate with
b=a ¼ 0:5 and S ¼ 10 is modelled with a 20� 8 mesh. In order to illustrate the effect of segmentation of the
electroded sensor surfaces, they are divided into 1, 4 ð2� 2Þ, 10 ð5� 2Þ, 20 ð5� 4Þ and 40 ð10� 4Þ patches of
equal size (Fig. 14). This is modelled by assigning an electric node to each electroded pair of patches (at the top
and bottom). The dimensionless natural frequencies ōn for the first six modes for varying number of electrodes
are presented in Table 9 for open–close and open conditions. For comparison, the frequencies for the close
circuit condition are also listed in the table. It is observed that the natural frequencies increase with the
number of surfaces in the open circuit condition and also with the number of equipotential electroded
segments in such open circuit surfaces. The open circuit fundamental frequency ō1 with 40 electrodes is larger
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Fig. 15. First six mode shapes for a cantilever hybrid plate (b) with 20 electrodes under an open–close condition.
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than the close circuit frequency by 1.6% and 3.2% for open–close and open conditions, respectively. With one
electrode, this difference reduces to 0.9% and 1.7% for the above two conditions. As stated earlier, the
effective stiffness of the hybrid plate becomes enhanced due to the electromechanical stiffness corresponding
to the open circuit potentials Fs. Physically, a part of the mechanical energy is converted into electric energy
through the induced electric potential and results in an increase in the effective stiffness. Since the degree of
constraint of the equipotential condition over the sensory surface decreases with the number of electrode
segments, the electromechanical stiffness and consequently the natural frequencies increase with segmentation.
The mode shapes of the first six modes of the cantilever hybrid plate with 20 electrode segments, in an
open–close condition, are presented in Fig. 15.

6. Conclusions

A novel efficient quadrilateral element with four physical nodes and one electric node is developed based on
a coupled improved zigzag theory for dynamic analysis of hybrid composite and sandwich plates. The model
considers the equipotential condition of electroded surfaces of piezoelectric layers, and also accounts for the
inplane electric field induced by the direct piezoelectric effect. The concept of electric node results in a
significant reduction in the number of electric dof. The numerical study reveals that the IDKQ inter-
polation for the deflection yields faster convergence than the DKQ interpolation for natural frequencies of
hybrid plates.

The performance of the element for the free vibration response of hybrid piezoelectric plates has been tested
for a variety of plate configurations, namely, piezoelectric bimorph, hybrid cross-ply composite, sandwich and
highly inhomogeneous test plates for different boundary conditions and shapes. Comparison of the predicted
free vibration response with the 3D piezoelasticity solution and the results of other available 2D theory-based
finite elements shows that the present IZIGT-based element is very accurate, robust and computationally
efficient. In contrast, the ITOT with the same number of dof yields highly erroneous results for moderately
thick plates and even thinner plates with highly inhomogeneous laminates, such as the hybrid sandwich and
test plates considered in this study. The number of segments in the electroded surface under an open circuit
condition affects the natural frequencies.
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The present formulation is readily valid for patch piezoelectric sensors and actuators partly covering the
host plate, since it has been formulated based on primary displacement variables in a reference plane, which is
taken as the mid-surface of the host-laminated plate. However, numerical implementation of such a general
case would require handling elementwise different values of geometry and material parameters, and also
variable number of dof per element. These results will be reported in a future study.
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